Combination Sum
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
For example, given candidate set 2,3,6,7 and target 7
A solution set is:
[7]
[2, 2, 3]
This algorithm has time complexity O((n+k)!)
where n is the size of candidates, and k is the max repeated times for each candidates
and space complexity O(m) where m is the size of array for the solution.
public class Solution {
List<List<Integer>> output = new ArrayList<List<Integer>>();
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
helper(candidates, 0, target, new ArrayList());
return output;
}
private void helper(int[] array, int start, int target, List<Integer> result) {
if (target == 0) {
output.add(new ArrayList(result));
return;
} else if (target < 0) {
return;
} else {
for (int i = start; i < array.length; i++) {
if (target < array[i]) {
return;
}
result.add(array[i]);
helper(array, i, target-array[i], result);
result.remove(result.size() - 1);
}
}
}
}
Follow up:
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
public class Solution {
List<List<Integer>> output = new ArrayList<List<Integer>>();
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
Arrays.sort(candidates);
helper(candidates, 0, target, new ArrayList());
Set<List<Integer>> set = new HashSet<List<Integer>>(output);
output.clear();
output.addAll(set);
return output;
}
private void helper(int[] array, int start, int target, List<Integer> result) {
if (target == 0) {
output.add(new ArrayList(result));
return;
} else if (target < 0) {
return;
} else {
for (int i = start; i < array.length; i++) {
if (target < array[i]) {
return;
}
result.add(array[i]);
helper(array, i + 1, target-array[i], result);
result.remove(result.size() - 1);
}
}
}
}