Word Ladder
Problem Description
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:
Only one letter can be changed at a time Each intermediate word must exist in the word list For example,
Given: beginWord = "hit" endWord = "cog" wordList = ["hot","dot","dog","lot","log"] As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog", return its length 5.
Note: Return 0 if there is no such transformation sequence. All words have the same length. All words contain only lowercase alphabetic characters.
Note: Start word and end word are in the given word list.
public int ladderLength(String beginWord, String endWord, Set<String> wordList) {
Map<String, Integer> distance = new HashMap();
Queue<String> queue = new LinkedList();
queue.offer(beginWord);
distance.put(beginWord, 0);
wordList.remove(beginWord);
while (!queue.isEmpty()) {
String word = queue.poll();
if (word.equals(endWord))
break;
for (int i = 0; i < word.length(); i++) {
char[] charArray = word.toCharArray();
for (char k = 'a'; k <= 'z'; k++) {
charArray[i] = k;
String newWord = String.valueOf(charArray);
if (wordList.contains(newWord)) {
int length = distance.get(word);
distance.put(newWord, length + 1);
queue.offer(newWord);
wordList.remove(newWord);
}
}
}
}
if (distance.containsKey(endWord)) {
return distance.get(endWord) + 1;
} else {
return 0;
}
}